KOMPARASI ALGORITMA KLASIFIKASI DATA MINING UNTUK MEMPREDIKSI TINGKAT KEMATIAN DINI KANKER DENGAN DATASET EARLY DEATH CANCER

Panny Agustia Rahayuningsih

Sari


Cancer is something big in the world. Cancer is a malignant disease that is difficult to cure if the spread is too wide. However, detecting cancer cells as early as possible can reduce the risk of death. This study aims to predict the level of early detection of disasters in European countries using 5 classification algorithms, namely: Desecion Tree, Naïve Bayes, k-Nearset Neighbor, Random Forest and Neural Network of which algorithm is the best for this study. Tests carried out with several stages of research include: dataset (data contains), initial data processing, proposed method, credit method using 10 times cross validation, test results and t-test different tests. The alpha value is 0.05. if the probability is> 0.05 then H0 is accepted. If the probability is <0.05 then Ho is rejected. The results of the research that obtained performance with an accuracy value of 98.35% were the Neural Network algorithm. Whereas, the results of the research using the algirtic t-test with the best models are: Random Forest algorithm and Neural Network, the relatively good Naïve Bayes algorithm, the Desecion Tree algorithm is quite good and the poor algorithm is the K-Nearset Neighbor (K-NN) algorithm.

 

Keywords: Cancer, Algorithms, Classification, Probability


Teks Lengkap:

PDF

Referensi


World Health organization, http://www.who.int/mediacentre/factsheets/fs310/en/. diakses tanggal 21 Agustus 2016

Kementerian Kesehatan Republik Indonesia, http://www.dharmais.co.id/index.php/what-is-cancer-id.html. diakses tanggal 21 Agustus 2016

Kementerian Kesehatan Republik Indonesia, http://www.dharmais.co.id/index.php/what-are-the-warning-signs.html. diakses tanggal 21 Agustus 2016

https://beritagar.id/artikel/gaya-hidup/kanker-kini-pembunuh-nomor-satu-di-eropa-barat. diakses tanggal 22 Agustus 2016.

http://www.depkes.go.id/resources/download/

pusdatin/infodatin/infodatin-kanker.pdf. diakses tanggal 21 Agustus 2016

Alfisahrin C4.5, Naive Bayes dan Neural Network, S. (2014). Komparasi Algoritma Untuk Memprediksi Penyakit Jantung. Jakarta: Pascasarjana Magister Ilmu Komputer STMIK Nusa Mandiri.

Breiman, Leo. 2001. Random Forests. Kluwer-Academic Publishers

Criminisi, A., Shotton, J. 2013. Decision Forest for Computer Vision and Medical Image Analysis. Springer-Verlag London.

Han, J., & Kamber, M. (2006). Data Mining: Concepts and Techniques. San Fransisco: Morgan kauffman.

Han, & Kamber. (2006). Data Mining Concepts and technique. San Francisco: Diane Cerra.

Kusrini, & Luthfi, E. T. (2009). Algoritma Data Mining.Yogyakarta: Andi Offset

Mugi Wahidin, dkk. Situasi Penyakit Kanker. Pusat Data dan Informasi. Kemeterian Kesehatan RI. Diakses pada tanggal 21 Agustus 2016.

Maimon & Rokach. (2010). Data Mining and knowledge Discovery Handbook. New York: Springer.

Susanto, S., & Suryadi, D. (2010). Pengantar Data MiningMenggali Pengetahuan dari Bongkahan Data. Yogyakarta: C.V ANDI OFFSET

Toni Arifin.2015.Metode Data Mining untuk Klasifikasi Data sel Nukleus dan Sel Radang Berdasarkan Analisa Tekstur. Informatika Vol II No 2 September 2015.Diambil dari: http://ejournal.bsi.ac.id/assets/files/Toni_-_Univ_BSI_-_OK_(425-433).pdf

Vercellis, C. (2009). Data Mining and Optimization for Decision Making. Italy: WILEY.

Vercellis. (2009). Business Intelligence: Data Mining and Optimization for Decision Making Decision Making.

Wu & Kumar. (2009). The Top Ten Algorithms in Data Mining. USA: CRC Press.


Refbacks

  • Saat ini tidak ada refbacks.



Didukung oleh:

STMIK Kaputama Binjai
Jl. Veteran No. 4 A - 9 A Binjai Kota Email : jtik.kaputama@gmail.com
p-ISSN : 2548-9704
e-ISSN : 2686-0880