PERBAIKAN KUALITAS CITRA GOOGLE MAPS MENGGUNAKAN METODE CONTRAST STRETCHING

Deri Kurniawan¹⁾, Relita Buaton²⁾, Achmad Fauzi³⁾

¹²³⁾STMIK KAPUTAMA

Jl.Veteran No.4A-9A, Binjai, Sumatra Utara, Telp:(061)8828840, Fax: (061)8828845 Email: derikurniawan395@gmail.com¹, fredy_smart04@yahoo.co², fauzie.kaputama@gmail.com³

ABSTRACT

Digital map images (Maps) can be used to browse, explore and find your way around the world. The graphics generated from the satellite image recording represent some of the colors in the object displayed on Google Maps. The process of capturing Google Maps images is often used for certain purposes, such as describing plantation areas that can describe barren land or land with fertile plants and so on. If the satellite recording results are not optimal, it can result in the information contained in the Google Maps image being reduced. Based on observations, it is necessary to build a computerized system to improve the image quality of Google Maps, so that the displayed image has a better quality after going through the repair process. The improvement process in question is to clarify objects in the Google Maps image that cannot be described properly by satellite capture. One method of image enhancement that can be used is Contrast Stretching. The use of the Contrast Stretching method can improve poor image quality by increasing the contrast value of the digital image, through the process of increasing the pixel gray level. The system is designed with the MATLAB R2014a programming application, after carrying out the testing process on several Google Maps images, the results show that the average percentage of the image improvement process is above 75% and the Google Maps image resulting from the system improvement is better than the image inputted into the system.

Keywords: Digital_Image, Contrast_Stretching, Google_Maps.

ABSTRAK

Citra peta (*Maps*) digital dapat digunakan untuk menelusuri, menjelajahi dan menemukan jalan di seluruh dunia. Grafik yang dihasilkan dari perekaman gambar oleh satelit mewakili beberapa warna pada objek yang ditampilkan pada Google *Maps*. Proses mengambilan (*capture*) citra Google *Maps* sering digunakan untuk keperluan tertentu, seperti menggambarkan wilayah perkebunan yang dapat menggambarkan lahan tandus tanaman atau lahan dengan tanaman yang subur dan sebagainya. Jika hasil perekaman satelit tidak maksimal dapat mengakibatkan informasi yang terdapat pada citra Google *Maps* menjadi berkurang. Berdasarkan pengamatan, maka perlu di bangun sebuah sistem yang terkomputerisasi untuk memperbaiki kualitas citra Google *Maps*, sehingga citra yang ditampilkan memiliki kualitas yang lebih baik setelah melalui proses perbaikan. Proses perbaikan yang dimaksud adalah untuk memperjelas objek-objek pada citra Google *Maps* yang tidak dapat digunakan adalah *Contrast Stretching*. Pemanfaatan metode *contrast Stretching* dapat memperbaiki kualitas citra yang kurang baik dengan meningkatkan nilai kontras dari citra digital tersebut, melalui proses peningkatan pixel *gray* level. Sistem dirancang dengan aplikasi pemrograman MATLAB R2014a, setelah melakukan proses pengujian pada beberapa citra

Google *Maps*, didapatkan hasil bahwa rata-rata persentasi proses perbaikan citra diatas 75% dan citra Google *Maps* hasil perbaikan sistem menjadi lebih baik dari citra yang diinputkan pada sistem.

Kata Kunci: Citra_Digital, Contrast_Stretching, Google_Maps.

1. **PENDAHULUAN**

Perkembangan teknologi telah komputer sehingga mengubah dapat melakukan pengolahan terhadap berbagai macam data seperti suara, citra. dan sebagainya. Semua data tersebut hanya dapat diolah jika data tersebut telah menjadi data dalam bentuk digital. Proses perubahan data menjadi data digital gambar dengan menggunakan komputer dikenal dengan proses pengolahan citra digital (digital image processing). Tujuan dari digital image processing adalah untuk mengolah citra input sehingga menghasilkan citra output yang sesuai dengan kebutuhan pengguna.

Citra peta (*Maps*) digital dapat digunakan untuk menelusuri, menjelajahi dan menemukan jalan di seluruh dunia. Grafik yang dihasilkan dari perekaman gambar oleh satelit mewakili beberapa warna pada objek yang ditampilkan pada Google *Maps*. Seperti warna hijau untuk hutan, biru untuk lautan, coklat untuk pesawahan dan sebagainya. Hasil penangkapan objek di Bumi oleh satelit digambarkan berdasarkan jarak yang cukup jauh, sehingga objek yang ditangkap oleh satelit tidak semuanya dapat digambarkan dengan baik.

Proses mengambilan (capture) citra Google *Maps* sering digunakan untuk keperluan tertentu, seperti menggambarkan wilayah perkebunan yang dapat menggambarkan lahan tandus tanaman atau lahan dengan tanaman yang subur dan sebagainya. Jika hasil perekaman satelit tidak maksimal dapat mengakibatkan informasi yang terdapat pada citra Google Maps menjadi berkurang. Ditambah lagi dengan proses pembesaran tampilan (zoom) pada Google Maps mengakibatkan objek semakin tidak terlihat dengan jelas. Melihat banyaknya penggunaan Google *Maps* sebagai petunjuk untuk menelusuri sebuah wilayah, perbaikan kualitas citra pada Google *Maps* perlu ditingkatkan.

Berdasarkan pengamatan, maka perlu sebuah bangun sistem di yang terkomputerisasi untuk memperbaiki kualitas citra Google Maps, sehingga citra yang ditampilkan memiliki kualitas yang lebih baik setelah melalui proses perbaikan. Proses perbaikan yang dimaksud adalah untuk memperjelas objek-objek pada citra Google Maps yang tidak dapat digambarkan dengan baik oleh penangkapan satelit. Perbaikan citra kualitas (image *enhancement*) merupakan salah satu bidang yang dapat memperbaiki kualitas citra yang awalnya kabur atau citra tidak dapat menggambarkan objek secara jelas. Salah satu metode image enhancement yang dapat digunakan adalah Contrast Stretching. Pemanfaatan metode dapat memperbaiki Contrast Stretching kualitas citra yang kurang baik dengan meningkatkan nilai kontras dari citra digital tersebut, melalui proses peningkatan pixel gray level.

Penelitian ini diperkuat oleh beberapa terhadulu penelitian sebagai jurnal pendukung penelitian yang penulis lakukan. Pertama penelitian oleh (Sianturi, 2020) dengan judul "Penerapan Metode Contrast Stretching Untuk Peningkatan Kualitas Citra Bidang Biomedis", pada penelitian tersebut disimpulkan bahwa dengan mengkombinasikan metode **Contrast** Stretching memperjelas hasil dapat pengambilan gambar dengan sinar-X yang dulu gambarnya susah di simpulkan hasilnya menjadi dapat di lihat dengan hasil gambar setelah terapkan metode Contrast Stretching. Sehingga nantinya bidang biomedisnya bisa

menyimpulkan penyakit yang ada didalam paru-paru pasien. Dan penelitian oleh (Purba, 2020) dengan judul "Aplikasi Perbaikan Kualitas Citra Hasil Penginderaan Jauh (Remote Sensing) Dengan Metode Contrast Stretching", dari penelitian yang dilakukan disimpuklan bahwa metode Contrast Stretching dapat diterapkan dalam aplikasi perbaikan kualitas citra hasil penginderaan jauh (remote sensing) yaitu dengan cara mengkonversikan nilai RGB tiap pixel citra ke bentuk citra grayscale sehingga diperoleh nilai grayscale citra baru, selanjutnya digunakan untuk memperbaiki nilai pixel RGB pada citra.

2. METODOLOGI PENELITIAN

Metodologi adalah ilmu-ilmu yang digunakan untuk memperoleh kebenaran menggunakan penelusuran dengan tata cara tertentu dalam menemukan kebenaran, tergantung dari realitas yang sedang dikaji. Tahap-tahap dalam proses perbaikan citra Google *Maps* adalah sebagai berikut:

Keterangan dari gambar struktur

bertahap untuk proses perbaikan citra dengan metode *Contrast Stretching* adalah sebagai berikut :

- 1. Identifikasi Permasalahan, tahap ini merupakan tahap awal yang digunakan untuk mengidentifikasi masalah dengan tujuan untuk mengamati dan mencari permasalahan yang sedang dihadapi dalam teknologi digital, terutama pada bidang pengolahan citra digital dalam penggunaan citra untuk kebutuhan tertentu.
- 2. Mengumpulkan Teori, pengumpulan teori-teori yang berhubungan dengan pokok permasalahan seperti teori tentang citra, metode yang digunakan dan aplikasi perancangan dari sistem yang akan dibuat dan sebagainya. Dalam tahap ini, teori dikumpulkan dari beberapa sumber seperti buku-buku, jurnal, artikel dan referesi lainnya.
- Analisa Metode, pada tahap ini peneliti 3. akan menguji metode yang digunakan dalam proses perbaikan, dengan panduan sudah ada pada teori-teori vang pendukung dari buku-buku maupun jurnal terkait dengan pokok permasalahan.
- 4. Merancang Sistem, setelah melakukan pengujian terhadap metode yang digunakan, pada tahap ini dilakukan perancangan sistem terhadap masalah yang sedang diteliti, bisa berupa tahap untuk merancang alur kerja dari sistem dengan *flowchart* dan *use case diagram* serta merancang desain dari tampilan antarmuka (*interface*) dari sistem yang akan dibuat.
- 5. Penerapan Metode, setelah pengujian metode dan perancangan sistem, pada tahap ini mengimplementasikan metode yang sudah diuji sebelumnya dengan rancangan sistem yang telah dibuat serta melakukan pengkodeansesuai dengan bahasa pemrograman yang digunakan untuk membuat sistem tersebut.

6. Pengujian Sistem, pada tahap akhir, dilakukan serangkaian pengujian terhadap sistem yang telah dibuat, pengujian-pengujian dilakukan agar dapat menemukan kesalahan-kesalahan (*error*) pada sistem dan melakukan perbaikanperbaikan yang diperlukan.

3. HASIL DAN PEMBAHASAN 3.1 Hasil Analisa

Analisa pengujian metode perbaikan pada citra akan dilakukan dengan metode *Contrast Stretching*. Sebelum melakukan proses perbaikan pada gambar dengan kualitas yang buruk, maka diperlukan citra Google *Maps* sebagai citra untuk pengujian metode, pada penelitian ini penulis menggunakan citra Google *Maps* sebagai berikut:

Gambar 2. Citra Google *Maps* Pusat Kota Binjai

Dalam susunan sebuah pixel dari citra berwarna terdiri dari pixel RGB (Red, Green, Blue), untuk mengetahui susunan pixel berwarna diatas, maka penulis akan menapilkannya pada tabel-tabel pixel dibawah ini, pixel yang akan ditampilkan adalah pixel dengan ukuran 20 x 10 dari bagian gambar diatas dimulai pada titik (0,0)sampai dengan (19,9) yaitu sebagai berikut:

Tabel 1. Potongan Pixel	Red
-------------------------	-----

(x , y)	0	1	2	3	4	5	6	7	8	9
0	39	47	53	167	180	64	179	45	27	116
1	14	167	29	200	16	48	235	50	34	128
2	0	35	87	73	21	38	66	255	30	138
3	44	120	151	86	14	30	68	48	23	139
4	109	167	111	24	17	46	60	47	27	133
5	186	108	22	21	49	67	74	33	32	129

(x , y)	0	1	2	3	4	5	6	7	8	9
6	218	107	11	25	48	65	87	47	28	137
7	149	189	77	0	42	64	56	41	25	150
8	61	164	157	47	9	47	60	41	35	130
9	18	87	171	139	31	16	52	36	23	148
10	0	10	102	126	32	9	51	37	12	95
11	15	4	20	29	14	24	44	38	20	19
12	64	66	51	35	41	52	55	54	42	22
13	108	102	101	92	75	72	73	64	55	64
14	119	102	98	94	80	74	70	56	59	70
15	127	131	112	93	96	89	71	67	63	56
16	137	126	112	102	97	88	75	64	64	60
17	138	127	114	104	99	90	76	65	65	62
18	133	123	111	103	99	90	78	66	65	63
19	122	113	104	99	97	89	77	65	66	64

Tabel 2. Potongan Pixel Green

(\mathbf{v}, \mathbf{v})	0	1	2	2	<u>/</u>	5	6	7	8	0
(x ,y)	U	1	4	3	4	3	U	/	0	9
0	- 39	47	53	134	53	108	51	44	26	115
1	14	29	159	168	77	47	58	49	33	127
2	0	35	87	73	20	37	65	34	29	137
3	44	120	151	86	13	29	67	47	22	138
4	109	167	111	24	17	46	59	46	26	132
5	186	108	22	21	49	67	73	32	31	128
6	219	108	11	25	48	65	87	47	28	137
7	150	190	77	0	42	64	56	41	25	150
8	61	164	157	47	9	47	59	40	34	129
9	18	87	171	139	31	15	51	35	22	147
10	0	10	102	126	31	8	50	36	11	94
11	15	4	20	28	13	23	43	37	19	18
12	63	65	50	34	40	51	54	53	40	21
13	107	101	100	91	74	71	71	62	53	62
14	118	101	97	93	78	72	68	54	57	68
15	126	130	111	92	94	87	69	65	61	54
16	138	127	111	101	94	85	72	61	61	58
17	139	128	113	103	96	87	73	62	62	59
18	134	124	110	102	96	87	72	60	62	60
19	123	114	103	98	94	86	71	59	63	61

Tabel 3. Potongan Pixel Blue

(x , y)	0	1	2	3	4	5	6	7	8	9
0	39	47	55	48	59	69	59	52	34	123
1	14	29	31	11	20	53	66	57	41	133
2	0	35	89	75	25	42	71	40	35	143
3	44	120	153	88	18	34	73	53	28	143

(x , y)	0	1	2	3	4	5	6	7	8	9
4	107	165	111	24	19	48	64	51	31	137
5	184	106	22	21	51	69	78	37	36	133
6	214	103	9	25	50	67	89	49	30	139
7	145	185	75	0	44	66	58	43	27	152
8	59	162	157	47	11	49	64	45	39	134
9	16	85	171	141	33	20	56	40	27	152
10	0	10	104	128	36	14	56	42	17	100
11	17	6	22	33	19	29	49	43	27	24
12	68	70	55	40	46	59	62	61	51	29
13	112	106	106	97	82	79	82	73	64	73
14	124	107	105	101	89	83	81	67	70	79
15	132	136	119	100	105	98	80	78	74	67
16	143	132	117	107	103	94	81	72	72	69
17	144	133	119	109	105	96	82	71	73	70
18	139	129	116	108	105	96	82	70	73	71
19	128	119	109	104	103	95	81	69	74	72

Selanjutnya untuk sampel citra yang akan diolah dari potongan gambar citra Google *Maps* Pusat Kota Binjai diatas dapat dilihat pada gambar berikut ini:

Gambar 3. Sampel Potongan Citra

Pada peregangan kontras, setiap pixel pada citra ditransformasi dengan menggunakan fungsi-fungsi berikut :

- 1. Untuk $0 \le C < C1$, maka $D = C * \frac{D1}{C1}$
- 2. Untuk C1 < C < C2, maka D = D1 + (C-C1)*(D2-D1)

3. Untuk C2 < C \leq 255, maka D = D2 + $\frac{(C-C2)*(255-D2)}{(255-C2)}$

Keterangan :

C = nilai pixel awal (C(x,y))

D = nilai pixel hasil (D(x,y))

 $D = \min pixer nasn (D(x,y))$

C1 = nilai batas bawah x citra *grayscale*

C2 = nilai batas atas x citra grayscale

D1 = nilai batas bawah y citra *grayscale*

D2 = nilai batas atas y citra grayscale

Untuk proses analisa perhitungan terhadap metode *Contrast Stretching*, Lakukan proses *grayscale* pada pixel. Proses tersebut menggunakan persamaan Gray (x,y) =

Red(x,y) + Green(x,y) + Blue(x,y)

3 Prosesnya sebagai berikut: Gray(0,0) =Red(0,0) + Green(0,0) + Blue(0,0) =3 $\frac{39+39+39}{3} = 39$ Gray(0,1) = $\frac{\text{Red}(0,1) + \text{Green}(0,1) + \text{Blue}(0,1)}{2} =$ 3 $\frac{47+47+47}{3} = 47$ Grav(0,2) =Red(0,2) + Green(0,2) + Blue(0,2) =3 $\frac{53+53+55}{3} = 54$ Gray(0,3) =Red(0,3) + Green(0,3) + Blue(0,3) =

 $\frac{46+46+48}{3} = 47$

Gray(0,4) =	
Red(0,4) + Green(0,4) + Blue(0,4)	
	=

 $\frac{54+53+59}{3} = 55$

Lakukan proses yang sama sampai dengan pixel ke Gray(19,9); hasil dari proses *grayscale* dapat dilihat pada tabel berikut ini:

(x , y)	0	1	2	3	4	5	6	7	8	9
0	39	47	54	116	97	80	96	47	29	118
1	14	75	73	126	38	49	120	52	36	129
2	0	35	88	74	22	39	67	111	31	139
3	44	120	152	87	15	31	69	49	24	140
4	108	166	111	24	18	47	61	48	28	134
5	185	107	22	21	50	68	75	34	33	130
6	217	106	10	25	49	66	88	48	29	138
7	148	188	76	0	43	65	57	42	26	151
8	60	163	157	47	10	48	61	42	36	131
9	17	86	171	140	32	17	53	37	24	149
10	0	10	103	127	33	10	52	38	13	96
11	16	5	21	30	15	25	45	39	22	20
12	65	67	52	36	42	54	57	56	44	24
13	109	103	102	93	77	74	75	66	57	66
14	120	103	100	96	82	76	73	59	62	72
15	128	132	114	95	98	91	73	70	66	59
16	139	128	113	103	98	89	76	66	66	62
17	140	129	115	105	100	91	77	66	67	64
18	135	125	112	104	100	91	77	65	67	65
19	124	115	105	100	98	90	76	64	68	66

 Tabel 4. Hasil Proses Pixel Gravscale

Dari tabel diatas maka didapatkan nilai C1 = 124, C2 = 39, D1 = 66 dan D2 = 118. Selanjutnya adalah proses tranformasi nilai dengan kententuan kontras diatas, proses perbaikan nilai pixel adalah sebagai berikut: **Proses Pixel** *Red* (0,0) Sampai Dengan (3,9): C(0,0) = 30

$$\begin{array}{rcl} - & C(0,0) = 39 \\ D(0,0) = C(0,0) &* & \frac{D1}{C1} = 39 &* & \frac{66}{124} = 21 \\ - & C(0,1) = 47 \\ D(0,1) = C(0,1) &* & \frac{D1}{C1} = 47 &* & \frac{66}{124} = \end{array}$$

25 - C(0,2) = 53 $D(0,2) = C(0,2) * \frac{D1}{C1} = 53 * \frac{66}{124} =$ 28- C(0,3) = 167 $D(0,3) = D2 + \frac{(C(0,3) - C2) * (255 - D2)}{(255 - C2)} = 118 + \frac{(167 - 39) * (255 - 118)}{(255 - 39)} = 199$ - C(0,4) = 180 $D(0,4) = D2 + \frac{(C(0,4) - C2) * (255 - D2)}{(255 - C2)} = 118 + \frac{(180 - 39) * (255 - 118)}{(255 - 39)} = 207$ - C(0.5) = 64 $D(0,5) = C(0,5) * \frac{D1}{C1} = 64 * \frac{66}{124} =$ - C(0,6) = 179 $D(0,6) = D2 + \frac{(C(0,6) - C2)*(255 - D2)}{(255 - C2)} = 118 + \frac{(179 - 39)*(255 - 118)}{(255 - 39)} = 207$ - C(0,7) = 45 $D(0,7) = C(0,7) * \frac{D1}{C1} = 45 * \frac{66}{124} =$ 24 - C(0,8) = 27 $D(0,8) = C(0,8) * \frac{D1}{C1} = 27 * \frac{66}{124} =$ 14 - C(0,9) = 116 $D(0,9) = C(0,98) * \frac{D1}{C1} = 116 * \frac{66}{124}$ = 14 - C(1,0) = 27 $D(1,0) = C(1,0) * \frac{D1}{C1} = 14 * \frac{66}{124} =$ - C(1,1) = 167 $D(1,1) = D2 + \frac{(C(1,1)-C2)*(255-D2)}{(255-C2)} = 118 + \frac{(167-39)*(255-118)}{(255-39)} = 199$ - C(1,2) = 29

 $D(1,2) = C(1,1) * \frac{D1}{C1} = 29 * \frac{66}{124} = 15$ - C(1,3) = 200 $D(1,3) = D2 + \frac{(C(1,3)-C2)*(255-D2)}{(255-C2)} =$ $118 + \frac{(200 - 39) * (255 - 118)}{(255 - 39)} = 220$ - C(1,4) = 16 $D(1,4) = C(1,4) * \frac{D1}{C1} = 16 * \frac{66}{124} = 9$ - C(1,5) = 48 $D(1,5) = C(1,5) * \frac{D1}{C1} = 48 * \frac{66}{124} = 26$ - C(1,6) = 235 $D(1,6) = D2 + \frac{(C(1,6)-C2)*(255-D2)}{(255-C2)} =$ $118 + \frac{(235 - 39) * (255 - 118)}{(255 - 39)} = 242$ - C(1,7) = 50 $D(1,7) = C(1,7) * \frac{D1}{C1} = 50 * \frac{66}{124} = 27$ - C(1,8) = 34 $D(1,8) = C(1,8) * \frac{D1}{C1} = 34 * \frac{66}{124} = 18$ - C(1,9) = 128 $D(1,9) = D2 + \frac{(C(1,9)-C2)*(255-D2)}{(255-C2)} =$ $118 + \frac{(128 - 39) * (255 - 118)}{(255 - 39)} = 174$ - C(2,0) = 0 $D(2,0) = C(2,0) * \frac{D1}{C1} = 0 * \frac{66}{124} = 0$ - C(2,1) = 35 $D(2,1) = C(2,1) * \frac{D1}{C1} = 35 * \frac{66}{124} = 19$ - C(2,2) = 87 $D(2,2) = C(2,2) * \frac{D1}{C1} = 87 * \frac{66}{124} = 46$ - C(2,3) = 73 $D(2,3) = C(2,3) * \frac{D1}{C1} = 73 * \frac{66}{124} = 39$ - C(2,4) = 21 $D(2,4) = C(2,4) * \frac{D1}{C1} = 21 * \frac{66}{124} = 11$ - C(2,5) = 38

	D(2,5) = C(2,5) *	$\frac{D1}{C1} = 38 *$	$\frac{66}{124} = 20$
_	C(2,6) = 66	01	127
	D(2,6) = C(2,6) *	$\frac{D1}{C1} = 66 *$	$\frac{66}{124} = 35$
_	C(2,7) = 255		
	$D(2,7) = D2 + \frac{(C(1))^2}{2}$	(2,7)-C2)*(2 (255-C	$\frac{255-D2}{2} =$
	(255-39)*	(255–118)	255
	(255	5–39)	= 255
-	C(2,8) = 30	D1	66
	D(2,8) = C(2,8) *	$\frac{D1}{C1} = 30 *$	$\frac{66}{124} = 16$
_	C(2,9) = 138	(20) (2)	2FF D2)
	$D(2,9) = D2 + \frac{CC}{2}$	(255-0	$\frac{233-D2}{2} =$
	(138-39)*	(255–C	2)
	$118 + \frac{(255)}{(255)}$	<u>()</u> 5–39)	= 181
_	C(3,0) = 44	_	
	D(3,0) = C(3,0) *	$\frac{D1}{21} = 44 *$	$\frac{66}{124} = 121$
_	C(3,1) = 120	C1	124
	D(3.1) = C(3.1) *	$\frac{D1}{-} = 120 *$	$\frac{66}{66} = 64$
_	C(3,2) = 151	C1	124
	C(3,2) = 151	C(3,2)-C2)	*(255–D2)
	D(3,2) = D2 + -	(255-	-C2) =
	$118 \pm \frac{(151-39)}{}$	(255–118)	- 198
	(255	5–39)	- 170
_	C(3,3) = 86	D1	66
	D(3,3) = C(3,3) *	$\frac{1}{C1} = 86 *$	$\frac{124}{124} = 46$
-	C(3,4) = 14	D1	66
	D(3,4) = C(3,4) *	$\frac{D1}{C1} = 4144$	$* \frac{66}{124} = 7$
_	C(3,5) = 30	5	
	D(3,5) = C(3,5) *	$\frac{D1}{C1} = 30 *$	$\frac{66}{124} = 16$
_	C(3,6) = 68	D4	
	D(3,6) = C(3,6) *	$\frac{D1}{C1} = 68 *$	$\frac{66}{124} = 36$
_	C(3,7) = 48	01	147
	D(3,7) = C(3,7) *	$\frac{D1}{C1} = 48 *$	$\frac{66}{124} = 26$
_	C(3,8) = 68	U 1	147

$D(3,8) = C(3,8) * \frac{D1}{C1} = 23 * \frac{66}{124} = 12$ - C(3,9) = 139 $D(3,9) = D2 + \frac{(C(3,9) - C2) * (255 - D2)}{(255 - C2)} = 118 + \frac{(139 - 39) * (255 - 118)}{(255 - 39)} = 181$

Dengan proses yang sama untuk semua pixel *red* sampai dengan pixel ke (19,9), maka hasil perhitungan pixel *red* adalah sebagai berikut:

Tabel 5. Hasil Perbaikan Potongan Pixel *Red*

(x , y)	0	1	2	3	4	5	6	7	8	9
0	21	25	28	199	207	34	207	24	14	61
1	7	199	15	220	8	25	242	26	18	174
2	0	18	46	39	11	20	35	255	16	181
3	23	63	189	45	7	16	36	25	12	181
4	58	199	59	13	9	24	32	25	14	178
5	211	57	12	11	26	35	39	17	17	175
6	232	57	6	13	25	34	46	25	15	180
7	188	213	41	0	22	34	30	22	13	188
8	32	197	193	25	5	25	32	22	18	176
9	10	46	202	181	16	8	27	19	12	187
10	0	5	54	173	17	5	27	20	6	50
11	8	2	11	15	7	13	23	20	11	10
12	34	35	27	18	22	27	29	29	22	12
13	57	54	53	49	40	38	39	34	29	34
14	63	54	52	50	42	39	37	30	31	37
15	174	176	59	49	51	47	37	35	33	30
16	180	173	59	54	51	46	40	34	34	32
17	181	174	60	55	52	48	40	34	34	33
18	178	65	59	54	52	48	41	35	34	33
19	64	60	55	52	51	47	41	34	35	34

Setelah semua potongan pixel RGB diolah dengan perbaikan metode *Contrast Stretching*, maka dihasilkan potongan sampel citra yang telah diolah, yaitu sebagai berikut:

Gambar 4. Sampel Potongan Citra Baru Setelah Proses Perbaikan

Setelah semua pixel RGB pada citra telah diolah dengan metode *Contrast Stretching*, maka citra baru hasil perbaikan adalah sebagai berikut:

Gambar 5. Hasil Perbaikan Citra Google Maps Pusat Kota Binjai

Berdasarkan hasil pengolahan citra Goolge *Maps* pusat Kota Binjai yang telah dilakukan, maka dapat disimpulkan bahwa metode *Contrast Stretching* dapat memperbaiki kualitas citra dengan proses perbaikan nilai pixel

P-ISSN: 2548-9704 E-ISSN: 2686-0880

pada citra dengan pemanfaatan pixel sudut C1, C2, D1 dan D2 pada citra *grayscale*. Citra hasil perbaikan memiliki kontras yang jelas sehingga objek-objek pada citra Google *Maps* dapat digambarkan dengan baik.

3.2 Pembahasan

Sistem perbaikan citra digital dengan menggunakan metode Contrast Stretching dirancangan dengan aplikasi pemrograman MATLAB R2014a, untuk memperbaiki kualitas citra Google Maps. Pada sistem ini hasil penangkapan citra satelit untuk ditampilkan pada citra Google Maps yang kurang maksimal akan diperbaiki dengan proses perbaikan citra. Proses perbaikan merupakan bagian dari Image enhancement, pemrosesan vaitu citra. khususnya menggunakan komputer dengan tujuan meningkatkan kualitas citra. Tujuan dari dibangun sistem vang adalah untuk memperjelas objek pada citra Google Maps yang akan diproses. Pada citra yang diproses akan memperbaiki nilai pixel RGB (Red, Green, Blue) dengan memanfaatkan nilai C1, C2, D1, dan D2 sebagai transformasi perbaikan pada citra. Setelah melakukan metode implementasi perbaikan dan rancangan sistem terhadap sistem perbaikan citra, maka untuk mengetahui hasil dari implementasi sistem tersebut maka perlu dilakukan uji coba terhadap sistem yang telah selesai dirancang.

1. Tahap Proses Perbaikan Citra

Berikut ini adalah proses perbaikan citra Googel *Maps* pada sistem perbaikan citra yang telah dirancang dengan metode *Contrast Stretching*.

a. Inputkan citra

Proses perbaikan citra terdapat pada menu "PERBAIKAN", pada tahap ini pengguna harus penginputkan citra pada sistem dengan menekan tombol "IMPORT", tampilan proses pencarian citra pada sistem dapat dilihat pada gambar berikut:

Gambar 6. Tampilan Import Citra

Setelah citra diinputkan pada sistem, maka akan ditampilkan pada kolom citra awal, serta menampilkan nama *file*, dimensi dan *size* awal citra yang diinputkan pada sistem, tampilannya sebagai berikut:

Gambar 7. Tampilan Setelah *Import* Citra

b. Proses perbaikan citra

Pada tahap ini, untuk proses perbaikan pengguna harus menekan tombol "PROSES" pada sistem, setelah pengguna melakukan proses perbaikan citra Googel *Maps*, maka hasil perbaikan dapat dilihat pada kolom citra hasil pada sistem, berikut ini tampilan setelah proses perbaikan citra:

Gambar 8. Tampilan Setelah Proses Perbaikan Citra

Setelah proses perbaikan selesai maka sistem akan menampilkan size hasil persentasi perbaikan dan hasil perbaikan vang telah dilakukan. Persentasi perbaikan merupakan perbandingan dari perubahan nilai pixel dari citra awal yang di inputkan ke sistem dan setelah citra di proses oleh sisem menggunakan metode Contrast Stretching.

c. Analisa Proses Perbaikan Citra Analisa terhadap metode Contrast Stretching dalam proses perbaikan nilai pixel dimulai dengan tahap penentuan nilai transformasi pada citra yang diolah dengan mengambil nilai sudut dari pixel gravscale. Proses gravscale citra pixel pada menggunakan persamaan Gray(x,y) =Red(x,y) + Green(x,y) + Blue(x,y)3

proses tersebut dapat dilihat pada tampilan berikut ini:

ROSES	GRAYSC	ALE P	ROSES RGB	KELUAR			
				PROSES GR	RAYSACLE		
R(x,y)	G(x,y)	B(x,y)	1	Persamaan Proses	Proses Grayscale	Hasil Pixel Grayscale	
72	71	78	Gray(0,0) = (F	R(0,0)+G(0,0)+B(0,0))/3	Gray(0,0) = (72+71+76)/3	73.00	
89	88	93	Gray(1,0) = (F	R(1,0)+G(1,0)+B(1,0))/3	Gray(1,0) = (89+88+93)/3	90.00	13
88	87	92	Gray(2,0) = (F	R(2,0)+G(2,0)+B(2,0))/3	Gray(2,0) = (88+87+92)/3	89.00	1
66	65	70	Gray(3,0) = (F	R(3,0)+G(3,0)+B(3,0))/3	Gray(3,0) = (66+65+70)/3	67.00	
58	57	62	Gray(4,0) = (F	R(4,0)+G(4,0)+B(4,0))/3	Gray(4,0) = (58+57+62)/3	59.00	
72	71	78	Gray(5,0) = (F	R(5,0)+G(5,0)+B(5,0))/3	Gray(5,0) = (72+71+76)/3	73.00	
81	80	85	Gray(6,0) = (F	R(6,0)+G(6,0)+B(6,0))/3	Gray(6,0) = (81+80+85)/3	82.00	
76	75	80	Gray(7,0) = (F	R(7,0)+G(7,0)+B(7,0))/3	Gray(7,0) = (76+75+80)/3	77.00	
89	88	93	Gray(8,0) = (8	EV((0,8)8+(0,8)D+(0,8)	Gray(8,0) = (89+88+93)/3	90.00	
80	79	84	Gray(9,0) = (F	R(9,0)+G(9,0)+B(9,0))/3	Gray(9,0) = (80+79+84)/3	81.00	
77	76	81	Gray(10,0) = ((R(10,0)+G(10,0)+B(10,0))/3	Gray(10,0) = (77+76+81)/3	78.00	
84	83	88	Gray(11,0) =	(R(11,0)+G(11,0)+B(11,0))/3	Gray(11,0) = (84+83+88)/3	85.00	
79	78	83	Gray(12,0) = 1	(R(12,0)+G(12,0)+B(12,0))/3	Gray(12,0) = (79+78+83)/3	80.00	
59	58	63	Gray(13,0) = 1	(R(13,0)+G(13,0)+B(13,0))/3	Gray(13,0) = (59+58+63)/3	60.00	
53	52	57	Gray(14,0) = 1	R(14,0)+G(14,0)+B(14,0))/3	Gray(14,0) = (53+52+57)/3	54.00	
68	66	71	Gray(15,0) =	(R(15,0)+G(15,0)+B(15,0))/3	Gray(15,0) = (68+66+71)/3	68.33	
73	63	71	Gray(16,0) = ((R(16,0)+G(16,0)+B(16,0))/3	Gray(16,0) = (73+63+71)/3	69.00	
94	83	91	Gray(17,0) = (R(17,0)+G(17,0)+B(17,0))/3	Gray(17,0) = (94+83+91)/3	89.33	
108	97	105	Gray(18,0) = (R(18,0)+G(18,0)+B(18,0))/3	Gray(18,0) = (108+97+105)/3	103.33	
107	96	104	Gray(19,0) -	R(19,0)+G(19,0)+B(19,0))/3	Gray(19.0) = (107+95+104)/3	102.33	
92	91	96	Gray(0,0) = (F	R(0,0)+G(0,0)+B(0,0))/3	Gray(0,0) = (92+91+96)/3	93.00	
95	94	99	Gray(1,0) = (F	R(1,0)+G(1,0)+B(1,0))/3	Gray(1,0) = (95+94+99)/3	95.00	
83	82	87	Gray(2,0) = (F	R(2,0)+G(2,0)+B(2,0))/3	Gray(2,0) = (83+82+87)/3	84.00	
61	60	65	Gray(3,0) = (F	R(3,0)+G(3,0)+B(3,0))/3	Gray(3,0) = (61+60+65)/3	62.00	
55	54	59	Gray(4,0) = (F	R(4,0)+G(4,0)+B(4,0))/3	Gray(4,0) = (55+54+59)/3	56.00	
71	70	75	Gray(5,0) = (F	R(5,0)+G(5,0)+B(5,0))/3	Gray(5,0) = (71+70+75)/3	72.00	
85	84	89	Gray(6,0) = (F	R(6,0)+G(6,0)+B(6,0))/3	Gray(6,0) = (85+84+89)/3	86.00	
86	85	90	Gray(7,0) = (F	R(7,0)+G(7,0)+B(7,0))/3	Gray(7,0) = (86+85+90)/3	87.00	
77	76	81	Gray(8,0) = (8)	R(8,0)+G(8,0)+B(8,0))/3	Gray(8,0) = (77+76+81)/3	78.00	
20.	60	22	CrawlD.01 - //	NO 61-010 61-9/0 6110	Crewin h1 + (20-22-72)/2	.70.00	212

Gambar 9. Tampilan Analisa Proses Pixel *Grayscale*

Setelah proses pixel *grayscale* diatas, maka akan didapatkan nilai transformasi pixel untuk diproses yaitu C1, C2, D1 dan D2. Selanjutnya proses perbaikan pixel RGB pada citra dengan ketentuan persamaan sebagai berikut: 1. Untuk $0 \le C < C1$, maka D = C * D1

2. Untuk C1 < C < C2, maka D =
D1 +
$$\frac{(C-C1)*(D2-D1)}{(C2-C1)}$$

3. Untuk C2 < C
$$\leq$$
 255, maka D =
D2 + $\frac{(C-C2)*(255-D2)}{(255-C2)}$

Keterangan :

C = nilai pixel awal (C(x,y))

D = nilai pixel hasil (D(x,y))

C1 = nilai batas bawah x citra

grayscale

C2 = nilai batas atas x citra *grayscale* D1 = nilai batas bawah y citra *grayscale*

D2 = nilai batas atas y citra *grayscale* Untuk mendapatkan perbaikan nilai pixel pada citra proses perbaikan memanfaatkan nilai transformasi pada pixel *grayscale* citra. Analisa proses perbaikan pixel *Red* pada citra yang telah diolah sebelumnya dapat dilihat pada tampilan sistem berikut ini:

PROSES GRAYS	CALE PRO	SES RGB KELUAR			
		PROSE	S RGB		
60 60	D1 6		AND THE REPORT OF A DECK	PIXE	L
C1 69 C2 72	D2 7	4 RED	GREEN	BLUE	
Pixel	Persamaan	Rumus Persamaan	Proses Perbaikan Pixel	Hasil Perbaikan Pixel	1
R = (0,0) = 72	Persamaan 3	$\mathbb{D} = \mathbb{D}2 * ((\mathbb{R}(x,y)\text{-}\mathbb{C}2)^{*}(255\text{-}\mathbb{D}2)))((255\text{-}\mathbb{C}2))$	D = 74+((72-72)*(255-74)/(255-72))	74.00	
R = (1,0) = 89	Persamaan 3	$D=D2 + ((R(x,y)\text{-}C2)^{*}(255\text{-}D2))/((255\text{-}C2))$	D = 74+((89-72)*(255-74)/(255-72))	90.81	
R = (2,0) = 88	Persamaan 3	$\mathbb{D} = \mathbb{D}2 + ((\mathbb{R}(x,y) - \mathbb{C}2)^*(255 - \mathbb{D}2))/((255 - \mathbb{C}2))$	D = 74+((88-72)*(255-74)/(255-72))	89.83	
R = (3,0) = 66	Persamaan 1	D = R(x,y) * D1/C1	D = 66*(56/69)	53.57	
R = (4,0) = 58	Persamaan 1	D = R(x,y) * D1/C1	D = 58*(56/69)	47.07	
R = (5,0) = 72	Persamaan 3	$\mathbb{D} = \mathbb{D}2 + ((\mathbb{R}(x,y)\text{-}\mathbb{C}2)^*(255\text{-}\mathbb{D}2))/((255\text{-}\mathbb{C}2))$	D = 74+((72-72)*(255-74)/(255-72))	74.00	
R = (6,0) = 81	Persamaan 3	$\mathbb{D} = \mathbb{D}2 * \left((\mathbb{R}(x,y) - \mathbb{C}2)^n (255 - \mathbb{D}2) \right) / ((255 - \mathbb{C}2))$	D = 74+((81-72)*(255-74)/(255-72))	82.90	
R = (7,0) = 76	Persamaan 3	$\mathbb{D} = \mathbb{D}2 + ((\mathbb{R}(x,y)\text{-}\mathbb{C}2)^{*}(255\text{-}\mathbb{D}2)) / ((255\text{-}\mathbb{C}2))$	$\mathbb{D}=74{+}((76{-}72)^*(255{-}74))(255{-}72))$	77.96	
R = (8,0) = 89	Persamaan 3	$\mathbb{D} = \mathbb{D}2 + ((\mathbb{R}(x,y) - \mathbb{C}2)^*(255 - \mathbb{D}2))/((255 - \mathbb{C}2))$	D = 74+((89-72)*(255-74)/(255-72))	90.81	
R = (9,0) = 80	Persamaan 3	$D = D2 + ((R(x,y)\text{-}C2)^*(255\text{-}D2))/((255\text{-}C2))$	D = 74+((80-72)*(255-74)/(255-72))	81.91	
R = (10,0) = 77	Persamaan 3	$\mathbb{D} = \mathbb{D}2 + ((\mathbb{R}(x,y) - \mathbb{C}2)^n (255 - \mathbb{D}2)) / ((255 - \mathbb{C}2))$	D = 74+((77-72)*(255-74)/(255-72))	78.95	
R = (11,0) = 84	Persamaan 3	$D = D2 + ((R(x,y)-C2)^{(255-D2)})/((255-C2))$	D = 74+((84-72)*(255-74)/(255-72))	85.87	
R = (12,0) = 79	Persamaan 3	$D=D2+((R(x,y)\text{-}C2)^*(255\text{-}D2))/((255\text{-}C2))$	D = 74+((79-72)*(255-74)/(255-72))	80.92	
R = (13,0) = 59	Persamaan 1	D = R(x,y) * D1/C1	D = 59*(56/69)	47.88	
R = (14,0) = 53	Persamaan 1	D = R(x,y) * D1/C1	D = 53*(56/69)	43.01	
R = (15,0) = 68	Persamaan 1	D = R(x,y) * D1/C1	D = 68*(56/69)	55.19	
R = (16,0) = 73	Persamaan 3	$\mathbb{D} = \mathbb{D}2 + ((\mathbb{R}(x,y) - \mathbb{C}2)^n (255 - \mathbb{D}2))/((255 - \mathbb{C}2))$	D = 74+((73-72)*(255-74)/(255-72))	74.99	
R = (17,0) = 94	Persamaan 3	$\mathbb{D} = \mathbb{D}2 * \left((\mathbb{R}(x,y) - \mathbb{C}2)^* (255 - \mathbb{D}2) \right) / ((255 - \mathbb{C}2))$	D = 74+((94-72)*(255-74)/(255-72))	95.76	
R = (18,0) = 108	Persamaan 3	$D = D2 + ((R(x,y)-C2)^{(255-D2)})/((255-C2))$	D = 74+((108-72)*(255-74)/(255-72))	109.61	
R = (19,0) = 107	Persamaan 3	$\mathbb{D} = \mathbb{D}2 + ((\mathbb{R}(x,y) - \mathbb{C}2)^*(255 - \mathbb{D}2))/((255 - \mathbb{C}2))$	$D = 74 + ((107.72)^{*}(255.74))(255.72))$	108.62	
R = (0,1) = 92	Persamaan 3	$D = D2+ ((R(x,y)\text{-}C2)^{*}(255\text{-}D2))/((255\text{-}C2))$	D = 74+((92-72)*(255-74)/(255-72))	93.78	
R = (1,1) = 95	Persamaan 3	$\mathbb{D} = \mathbb{D}2 + ((\mathbb{R}(x,y) - \mathbb{C}2)^*(255 - \mathbb{D}2))/((255 - \mathbb{C}2))$	D = 74+((95-72)*(255-74)/(255-72))	96.75	
R = (2,1) = 83	Persamaan 3	$D=D2*\left((R(x,y)\text{-}C2)^{*}(255\text{-}D2))/((255\text{-}C2))\right)$	D = 74+((83-72)*(255-74)/(255-72))	84.88	
R = (3,1) = 61	Persamaan 1	D = R(x,y) * D1/C1	D = 61*(56/69)	49.51	
R = (4,1) = 55	Persamaan 1	D = R(x,y) * D1/C1	D = 55*(56/69)	44.64	

Gambar 10 Tampilan Analisa Proses Perbaikan Pixel *Red*

Selanjutnya, analisa proses perbaikan pixel *Green* pada citra yang telah diolah sebelumnya dengan ketentuan persamaan proses perbaikan nilai pixel diatas dapat dilihat pada tampilan sistem berikut ini:

PROSES GRAY	SCALE PRO	SES RGB KELUAR		
		PROSE	S RGB	
69	D1 5	6		PIXEL
C2 72	D2 7	4 RED	GREEN	BLUE
Pixel	Persamaan	Rumus Persamaan	Proses Perbaikan Pixel	Hasil Perbaikan Pixel
G = (0,0) = 71	Persamaan 2	D = D1+ ((G(x,y)-C1)*(D2-D1))/((C2-C1))	$D = 56 + ((71-69)^{*}(74-56)/(72-69))$	68.00
G = (1,0) = 88	Persamaan 3	$D=D2+((G(x,y)\text{-}C2)^{*}(255\text{-}D2))/((255\text{-}C2))$	D = 74+((68-72)*(255-74)/(255-72))	89.83
G = (2,0) = 87	Persamaan 3	$D=D2*\left((G(X,y)\text{-}C2)^{A}(255\text{-}D2)\right)/((255\text{-}C2))$	D = 74+((87-72)*(255-74)/(255-72))	88.84
G = (3,0) = 65	Persamaan 1	D = G(x,y) * D1/C1	D = 65*(56/69)	52.75
G = (4,0) = 57	Persamaan 1	D = G(x,y) * D1/C1	D = 57*(56/69)	46.26
G = (5,0) = 71	Persamaan 2	$D = D1 + ((G(x,y)-C1)^{n}(D2-D1))/((C2-C1))$	D = 56+((71-69)*(74-56)/(72-69))	68.00
G = (6,0) = 80	Persamaan 3	$D = D2 + ((G(x,y)-C2)^{n}(255-D2))/((255-C2))$	D = 74+((80-72)*(255-74)/(255-72))	81.91
G = (7,0) = 75	Persamaan 3	$D=D2+((G(x,y)\text{-}C2)^{A}(255\text{-}D2))/((255\text{-}C2))$	$D = 74 + ((75 - 72)^{\circ}(255 - 74)/(255 - 72))$	76.97
G = (8,0) = 88	Persamaan 3	$D = D2 + ((G(x,y)\text{-}C2)^{(255-D2)})/((255-C2))$	D = 74+((88-72)*(255-74)/(255-72))	89.83
G = (9,0) = 79	Persamaan 3	$D = D2 + ((G(x,y)-C2)^{(255-D2)})/((255-C2))$	D = 74+((79-72)*(255-74)/(255-72))	80.92
G = (10,0) = 76	Persamaan 3	$D=D2+((G(x,y)\text{-}C2)^n(255\text{-}D2))/((255\text{-}C2))$	D = 74+((76-72)*(255-74)/(255-72))	77.96
G = (11,0) = 83	Persamaan 3	$D = D2 + ((G(x,y)-C2)^{n}(255-D2))/((255-C2))$	D = 74+((83-72)*(255-74)/(255-72))	84.88
G = (12,0) = 78	Persamaan 3	$D = D2 + ((G(x,y)\text{-}C2)^{(255-D2)})/((255-C2))$	D = 74+((78-72)*(255-74)/(255-72))	79.93
G = (13,0) = 58	Persamaan 1	D = G(x,y) * D1/C1	D = 58*(56/69)	47.07
0 = (14,0) = 52	Persamaan 1	D = G(x,y) * D1/C1	D = 52*(56/69)	42.20
G = (15,0) = 66	Persamaan 1	D = G(x,y) * D1/C1	D = 66*(56/69)	53.57
G = (16,0) = 63	Persamaan 1	D = G(x,y) * D1/C1	D = 63*(56/69)	51.13
G = (17,0) = 83	Persamaan 3	$D = D2 + ((G(x,y)\text{-}C2)^*(255\text{-}D2))/((255\text{-}C2))$	D = 74+((83-72)*(255-74)/(255-72))	84.88
G = (18,0) = 97	Persamaan 3	$D=D2+((G(x,y)-C2)^n(255-D2))/((255-C2))$	D = 74+((97-72)*(255-74)/(255-72))	98.73
G = (19,0) = 96	Persamaan 3	$D = D2 + ((G(x,y)-C2)^{2}(255-D2))/((255-C2))$	D = 74+((95-72)*(255-74)/(255-72))	97.74
G = (0,1) = 91	Persamaan 3	$D=D2*\left((G(x,y)\text{-}C2)^{A}(255\text{-}D2)\right)/((255\text{-}C2))$	D = 74+((91-72)*(255-74)/(255-72))	92.79
G = (1,1) = 94	Persamaan 3	$D=D2+((G(x,y)\text{-}C2)^{*}(255\text{-}D2))/((255\text{-}C2))$	D = 74+((94-72)*(255-74)/(255-72))	95.76
G = (2,1) = 82	Persamaan 3	$D = D2 + ((G(x,y)\text{-}C2)^*(255\text{-}D2))/((255\text{-}C2))$	$D = 74 + ((82.72)^{(255.74)}(255.72))$	83.89
G = (3,1) = 60	Persamaan 1	D = G(x,y) * D1/C1	D = 60*(56/69)	48.70
G = (4,1) = 54	Persamaan 1	D = G(x,y) * D1/C1	D = 54*(56/69)	43.83

Gambar 11. Tampilan Analisa Proses Perbaikan Pixel *Green*

Dan yang terakhir, analisa proses perbaikan pixel *Blue*. Setelah proses perbaikan nilai pixel pada masingmasing nilai RGB pada citra selesai maka proses penggabungan nilai pixel RGB pada citra dengan menggunakan fungsi "cat(3,R,G,B)" pada aplikasi pemrograman MATLAB R2014a. Analisa pixel *Blue* pada citra yang telah diolah sebelumnya dengan ketentuan persamaan proses perbaikan nilai pixel diatas dapat dilihat pada tampilan sistem berikut ini:

PROSES GRAYS	CALE PRO	SES RGB KELUAR							
		PROSE	S RGB						
60		e							
09	UI U	RED	CREEN	BUIE	1				
C2 72	D2 7	4	OREEN	BLOE	J.				
Pixel	Persamaan	Rumus Persamaan	Proses Perbaikan Pixel	Hasil Perbaikan Pixel	Ē				
B = (0,0) = 76	Persamaan 3	$D=D2*\left((B(x,y)\text{-}C2)^*(255\text{-}D2))/((255\text{-}C2))\right)$	D = 74+((76-72)^(255-74)/(255-72))	77.96					
B = (1,0) = 93	Persamaan 3	$D = D2 + ((B(x,y)-C2)^*(255-D2))/((255-C2))$	$D=74{+}((93{-}72)^{*}(255{-}74))(255{-}72))$	94.77					
8 = (2,0) = 92	Persamaan 3	$D = D2+ ((B(x,y)\text{-}C2)^*(255\text{-}D2)) / ((255\text{-}C2))$	$D = 74 + ((92.72)^{\circ}(255.74))(255.72))$	93.78					
B = (3,0) = 70	Persamaan 2	$D=D1+((B(x,y)\text{-}C1)^*(D2\text{-}D1))/((C2\text{-}C1))$	$D = 56{+}((70{-}89)^{*}(74{-}56)/(72{-}69))$	62.00					
8 = (4,0) = 62	Persamaan 1	D = B(x,y) * D1/C1	D = 62*(56/69)	50.32					
8 = (5,0) = 76	Persamaan 3	$D=D2*\;((B(x,y)\text{-}C2)^n(255\text{-}D2)))((255\text{-}C2))$	D = 74+((76-72)*(255-74)/(255-72))	77.96					
B = (6,0) = 85	Persamaan 3	$D = D2 + ((B(x,y)\text{-}C2)^*(255\text{-}D2))/((255\text{-}C2))$	$D=74{+}((85{-}72)^{*}(255{-}74))(255{-}72))$	86.86					
B = (7,0) = 80	Persamaan 3	$D=D2+((B(x,y)\text{-}C2)^*(255\text{-}D2))/((255\text{-}C2))$	$D = 74 + ((80.72)^{(255.74)}(255.72))$	81.91					
8 = (8,0) = 93	Persamaan 3	$D = D2 + ((B(x,y)\text{-}C2)^*(255\text{-}D2)) / ((255\text{-}C2))$	$D = 74 + ((93 - 72)^{(255 - 74)}(255 - 72))$	94.77					
B = (9,0) = 84	Persamaan 3	$D=D2+((B(x,y)\text{-}C2)^*(255\text{-}D2))/((255\text{-}C2))$	D = 74+((84-72)*(255-74)/(255-72))	85.87					
8 = (10,0) = 81	Persamaan 3	$D=D2*\;((B(x,y)\text{-}C2)^{*}(255\text{-}D2))/((255\text{-}C2))$	D = 74+((81-72)*(255-74)/(255-72))	82.90					
8 = (11,0) = 88	Persamaan 3	$D=D2+((B(x,y)\text{-}C2)^{*}(255\text{-}D2))/((255\text{-}C2))$	$\mathbb{D}=74{+}((88{-}72)^{*}(255{-}74)^{*}(255{-}72))$	89.83					
8 = (12,0) = 83	Persamaan 3	$D = D2 + ((B(x,y)\text{-}C2)^*(255\text{-}D2))/((255\text{-}C2))$	D = 74+((83-72)*(255-74)/(255-72))	84.88					
8 = (13,0) = 63	Persamaan 1	D = B(x,y) * D1/C1	D = 63*(56/69)	51.13					
8 = (14,0) = 57	Persamaan 1	D = B(x,y) * D1/C1	D = 57*(56/69)	46.28					
B = (15,0) = 71	Persamaan 2	$D = D1 + ((B(x,y)\text{-}C1)^*(D2\text{-}D1))/((C2\text{-}C1))$	$D = 56+((71-69)^{(74-56)}(72-69))$	68.00					
8 = (16,0) = 71	Persamaan 2	D = D1+ ((8(x,y)-C1)*(D2-D1))/((C2-C1))	D = 56+((71-69)*(74-56)/(72-69))	68.00					
B = (17,0) = 91	Persamaan 3	$D=D2 \ast ((B(x,y)\text{-}C2)^*(255\text{-}D2))/((255\text{-}C2))$	$D=74{*}((91{-}72)^{*}(255{-}74)(255{-}72))$	92.79					
8 = (18,0) = 105	Persamaan 3	$D = D2 + ((B(x,y)\text{-}C2)^*(255\text{-}D2)) / ((255\text{-}C2))$	$D=74{+}((105{-}72){}^{*}(255{-}74))(255{-}72))$	106.64					
8 = (19,0) = 104	Persamaan 3	$D = D2+ ((B(x,y)\text{-}C2)^*(255\text{-}D2)) / ((255\text{-}C2))$	$\mathbb{D}=74{+}((104{-}72)^{*}(255{-}74))(255{-}72))$	105.65					
B = (0,1) = 96	Persamaan 3	$D = D2+ ((B(x,y)\text{-}C2)^*(255\text{-}D2))!((255\text{-}C2))$	$D = 74 + ((96-72)^{\circ}(255-74)^{\circ}(255-72))$	97.74					
B = (1,1) = 99	Persamaan 3	$D = D2 + ((B(x,y)\text{-}C2)^{*}(255\text{-}D2)))((255\text{-}C2))$	D = 74+((99-72)*(255-74)/(255-72))	100.70					
8 = (2,1) = 87	Persamaan 3	$D=D2*\left((B(x,y)\text{-}C2)^n(255\text{-}D2))/((255\text{-}C2))\right)$	D = 74+((87-72)*(255-74)/(255-72))	88.84					
B = (3,1) = 65	Persamaan 1	D = B(x,y) * D1/C1	D = 65*(56/69)	52.75					
B = (4,1) = 59	Persamaan 1	D = B(x,y) * D1/C1	D = 59*(56/69)	47.88					

Gambar 12. Tampilan Analisa Proses Perbaikan Pixel *Blue*

Setelah proses perbaikan nilai pixel dan penggabungan nilai pixel RGB selesai, maka sistem akan menampilkan hasil dari proses perbaikan yang telah dilakukan dan proses perbaikan citra telah selesai dilakukan.

d. Simpan citra

Pada tahap ini pengguna akan melakukan proses penyimpanan citra Googel *Maps* hasil proses perbaikan pada sistem. Penyimpanan citra dapat dilakukan dengan menekan tombol "SIMPAN" pada tampilan perbaikan citra, selanjunya pengguna harus menetukan lokasi penyimpan citra yang telah diproses dan memberikan nama baru untuk *file* citra yang telah diproses, berikut tampilan sistem setelah pengguna melakukan proses menyimpan citra:

Gambar 13. Tampilan Setelah Proses Simpan Citra

2. Pixel Citra

Berikut pixel citra awal dan pixel citra hasil proses oleh sistem, tampilan ini terdapat pada menu "PIXEL" pada sistem, pada tampilan ini juga sistem akan menampilkan nilai C1, C2, D1, dan D2 sebagai nilai transformasi citra. Tampilan dari nilai pixel RGB pada citra adalah sebagai berikut:

a. Pixel Grayscale

Tampilan ini terdapat pada tombol "PIXEL GRAYSCALE", yaitu:

P-ISSN: 2548-9704 E-ISSN: 2686-0880

UT AURA	PEREAKA	POEL G	RAVIK TENT	ANG RELUA	8										
													PIXEL	CITR	ł٨.
												_	KETERAN	GAN PIXE	L C
45		128	_			_			_			_			
	-		PC	KEL GRAY	SCALE		PIXE	L RED		POXEL	GREEN		PC	KEL BLUE	
35	02	97													
							EL AWAL								L H
	1	2	3	4	5	6	7		1	2	2	4	5	6	7
1	39	47	53	46	54	64	65 *	1	61	98	122	75	121	158	
2	14	29	29	9	16	48	56	2	2	0	2	7	1	42	
3	0	35	87	73	21	38	66	3	0	2	158	152	6	1	
4	44	120	151	86	14	30	EE	4	0	252	247	182	6	1	
5	109	167	111	24	17	46	EC	5	186	242	230	5	0	-41	
6	186	108	22	21	49	67	74	6	235	68	13	0	77	102	
7	218	107	11	25	48	65	83	7	255	12	0	6	46	64	
8	149	189	77	0	42	64	56	- A.	252	255	0	10	21	110	
9	61	164	157	47	9	47	- 6C		0	249	255	10	0	47	
50	18	87	171	139	31	16	65	23	3	63	234	255	3	3	
11	0	10	102	126	32	9	51	- 13	4	0	196	254	4	1	
12	15	4	20	29	54	24	- 41	12	0	0	0	2	1	6	
13	64	00	61	35	41	62	58	13	96	89	16	1	6	57	
14	108	102	101	92	75	72	72	- 34	254	150	188	179	73	86	
15	119	102	98	94	80	74	70	15	251	63	89	110	78	36	
16	127	131	112	93	96	89	71	28	244	235	130	71	119	132	
17	138	127	112	102	96	87	74*	17	752	152	119	109	103	84	

Gambar 7. Pixel Grayscale

b. Pixel Red

Tampilan ini terdapat pada tombol "PIXEL RED", yaitu sebagai berikut:

	_												PIXE	<mark>L CITE</mark> Igan pixe	₹ A ≣L CITT
49	01	128 97	PD	EL GRAY	ICALE		Pote	RED		PIXEL	GREEN		PI	XEL BLUE	
	1	2	3	4	5	6	7		1	2	3	4	5	6	7
1	39	47	63	46	64	64	6ú *	1	102	123	107	120	108	116	10
2	14	29	29	9	16	48	56	2	37	76	78	24	42	125	11
3	0	36	87	73	21	38	66	- 2	0	91	132	122	66	99	11
4	44	120	151	86	14	30	62	4	115	156	179	131	37	78	11
5	109	167	111	24	17	46	60	5	148	191	150	63	44	120	11
6	198	108	22	21	49	67	74	- 6	205	147	67	55	104	117	12
2	218	107	11	25	48	65	87	2	228	147	29	65	125	116	13
8	149	189	77	0	42	64	55	1 A .	177	207	125	0	110	115	11
9	61	164	167	47	9	47	60		113	100	183	123	24	123	1
10	18	87	171	130	31	16	52	- 10	47	132	194	170	81	42	10
11	0	10	102	126	32	9	61	- 13	0	26	143	161	84	24	1
12	15	4	20	29	14	24	- 41	12	29	10	62	76	37	63	1
13	64	66	61	35	41	52	54	10	115	117	106	91	107	107	11
14	109	102	101	92	75	72	71	34	147	143	142	136	123	121	12
15	119	102	98	94	80	74	π	15	156	143	140	137	127	123	12
16	127	131	112	93	95	89	71	15	161	164	150	137	139	134	12

Gambar 8. Pixel Red

c. Pixel Green

Tampilan ini terdapat pada tombol "PIXEL GREEN", yaitu sebagai berikut:

45	01	128	_										PIXEL KETERAN	CITE	2 A
35	02	97	PO	EL GRAY	SCALE		PIXEL	RED		PIXEL	GREEN		PO	CEL BLUE	
		_													L HAT
_	1	2	3		5		7		1	2	3	4	5		7
1	39	47	53	46	53	63	51.4	1	102	123	107	120	107	115	10
2	14	29	29	9	15	47	58	2	37	78	76	24	39	123	1
3	0	35	87	73	20	37	66	3	0	91	132	122	52	97	1
4	44	120	151	36	13	29	63	4	115	156	179	131	34	76	1
5	109	167	111	24	17	46	56	5	148	191	150	63	44	120	1
6	196	108	22	21	49	67	71	6	205	147	67	55	104	117	1;
7	219	108	11	25	48	65	83	7	229	147	29	65	125	116	1
8	150	190	77	0	42	64	56	8	178	207	125	0	110	115	1
9	61	164	157	47	9	47	54	9	113	188	183	123	24	123	1
10	18	87	171	130	31	15	51	33	47	132	194	170	81	39	1
11	0	10	102	126	31	8	5C	11	0	26	143	161	81	21	1
1.2	15	4	20	28	13	23	- 41	12	39	10	62	73	34	60	1
13	63	65	50	34	40	51	54 E	11	115	116	105	89	104	106	1
14	107	101	100	91	74	71	71	34	147	142	142	135	123	120	1;
15	110	101	97	93	78	72	64	15	155	142	139	137	1.20	121	1
16	128	130	111	92	94	87	65	18	161	164	150	136	137	132	1
17	138	127	111	101	94	R5	75 °	17	169	161	150	142	137	131	1

Gambar 16. Pixel Green

d. Pixel Blue

Tampilan ini terdapat pada tombol "PIXEL BLUE", yaitu sebagai berikut:

NJ UTABLE	PEREARAN	PHEL G	NAVER TENTS	AND RELUA											
													PIXEL	CITE	!A
															LCIT
49	01	128	_												
			PO	EL GRAY	SCALE		PIXEL R	ED		POCEL	GREEN		Pt	CEL BLUE	
65 29	02	97													
						Pixi								PIXI	LHA
	1	2	3		3	4	7		1	2	2		3	6	7
1	39	47	55	48	59	69	55 -	1	102	123	109	125	112	119	1
2	14	29	31	11	20	53	(K)	2	37	78	81	29	52	107	1
3	0	35	89	75	25	42	71	3	0	91	134	123	65	110	1
4	44	120	153	88	18	34	71	4	115	158	180	133	47	89	1
5	107	165	111	24	19	48	64	5	147	189	150	63	60	125	1
6	184	106	22	21	51	69	71	6	203	145	67	55	105	119	1
7	214	103	9	25	50	67	85	7	225	144	24	65	105	117	1
8	145	185	75	0	44	66	56	8	175	204	123	0	115	117	1
9	59	162	157	47	11	49	64		112	187	183	123	29	104	1
10	16	85	171	141	33	20	54	23	42	131	194	172	85	52	1
11	0	10	104	128	36	14	54	13	0	26	145	162	94	37	1
12	17	6	22	33	19	29	45	12	44	16	67	86	50	76	1
13	68	70	55	40	45	69	64	13	118	120	109	104	120	112	1
34	112	106	105	97	82	79	85	34	150	145	145	139	128	126	1
15	124	107	105	101	89	83	81	15	159	147	145	142	134	129	1
16	132	136	119	100	105	98	EK .	26	165	168	156	142	145	140	1
17	143	132	117	907	103	94	81.7	17	173	165	154	147	144	137	1
	<u>.</u>								<						_

Gambar 18. Pixel Blue

3. Grafik Citra

Berikut ini adalah grafik citra hasil proses perbaikan citra yang telah diinputkan dan di proses pada sistem, tampilan tersebut terdapat pada menu "GRAFIK", yaitu:

Gambar 18. Grafik Citra

Dari grafik diatas garis warna hitam merupakan pixel *grayscale*, merah untuk pixel *red*, hijau untuk pixel *green* dan biru untuk pixel *blue*

4. KESIMPULAN

Sebagai penutup penulisan penelitian ini, penulis mengambil kesimpulan terhadap sistem perbaikan citra, kesimpulan tersebut sebagai berikut:

- Sistem 1. dirancang dan dibangun aplikasi pemrograman menggunakan MATLAB R2014a. Sistem perbaikan citra yang telah dibangun dengan tampilan yang mudah dipahami oleh sehingga mempermudah pengguna, pengguna dalam proses perbaikan citra Google Maps.
- 2. Implementasi metode *Contrast Stretching* pada sistem dilakukan sesuai dengan tahapan perbaikan citra yang dilakika pada *script* program. Sistem telah berhasil dibangun dengan penerapan

metode *Contrast Stretching* yang menggunakan nilai *grayscale* C1, C2, D1 dan D2 untuk nilai transformasi pixel RGB pada citra Google *Maps*.

Berdasarkan uji coba yang dilakukan 3. pada sistem dengan implementasi metode Contrast Stretching sebagai proses perbaikan citra Google Maps yang di inputkan, didapatkan persentasi rata-rata sebesar 75% dari beberapa citra yang telah di proses oleh sistem, objek pada citra hasil proses sistem dapat diperjelas dengan baik, dengan hasil tersebut menunjukan bahwa metode Contrast Stretching dapat memperbaiki kualitas citra Google Maps dengan memperbaiki nilai pixel RGB yang kurang maksimal dari hasil tangkapan citra satelit.

5. SARAN

Setelah penulis melakukan penguraian pembahasan dan memberi kesimpulan terhadap uraian pembahasan tersebut, maka penulis memberikan beberapa saran yang dapat berguna dimasa yang akan datang, saran tersebut sebagai berikut:

- 1. Metode perbaikan kualitas dari sebuah citra dapat meggunakan gabungan beberapa metode sekaligus tidak hanya metode *Contrast Stretching* dan diterapkan secara bertahap, sehingga menghasilkan citra yang lebih baik dengan proses yang lebih efektif dan efesien untuk dilakukan.
- 2. Pada masa yang akan datang diharapkan sistem pengolahan citra digital yang digunakan dapat dikembangkan menjadi aplikasi yang lebih efesien lagi untuk banyak pengguna.
- 3. Diharapkan untuk pengembangan dari sistem, citra yang didinputkan tidak hanya berformat *.jpg, *.jpeg dan *.bmp saja, tetapi dapat luas lagi, sesuai dengan kebutuhan dari pengguna.

DAFTAR PUSTAKA

- [1]. Fahmi, H. (2018). Aplikasi Pembelajaran Unified Modeling Language Berbasis Computer Assisted Instruction. Query, 5341(October).
- [2]. Fauzi, A. (2020). Ekstraksi Citra Pada Proses Keamanan Kriptografi Memanfaatkan Algoritma Secure Hash (SHA). Jurnal Informatika Kaputama(JIK), 1–8.
- [3]. Fitri, M. (2019). Implementasi Reduksi Noise Pada Citra Ultrasonografi (USG) Menggunakan metode Arithmetic Mean Filter. Jurnal Pelita Informatika, 3(Januari).
- [4]. Kim, P. (2017). MATLAB Deep Learning. In MATLAB Deep Learning. https://doi.org/10.1007/978-1-4842-2845-6
- [5]. Masud, M., Fitriyah, F., & Effendi, U. (2020). Identifikasi Jenis dan Mutu Teh Menggunakan Teknik Pengolahan Citra Berdasarkan Warna dengan Metode Hue Saturation Intensity (HSI). Jurnal Teknotan, 11(2). https://doi.org/10.24198/jt.vol11n2.7
- Muhammad, Y., Nafi'iyah, N., & [6]. Afifah, A. Y. (2021). Sistem Perbaikan Citra CCTV Dengan Pemanfaatan Proses Citra Digital Menggunakan Metode Contrast Stretching. RESEARCH: Journal of Computer, Information System & Technology Management, 4(1). https://doi.org/10.25273/research.v4i1.6 687
- [7]. Nasution, D. L. (2020). Perbaikan Kualitas Citra Maps Menggunakan Metode Contrast Limited Adaptive Histogram Equalization (CLAHE). KOMIK (Konferensi Nasional Teknologi Informasi Dan Komputer), 3(1). https://doi.org/10.30865/komik.v3i1.15 66
- [8]. Purba, B. (2020). Aplikasi Perbaikan Kualitas Citra Hasil Penginderaan Jauh (Remote Sensing) Dengan Metode

Contrast Stretching. Jurnal Times, VI(2).

- [9]. Sianturi, F. A. (2020). Penerapan Metode Contrast Stretching Untuk Peningkatan Kualitas Citra Bidang Biomedis. Jurnal Mantik Penusa, 18(2).
- [10]. Suhardi, A., Mukaf, R. A., & Hendro, A. (2019). Optimasi Flowchart Untuk Mendukung Sistem Pendidikan Sekolah

Menengah Pertama (SMP). Pelita Jurnal, 3(3), 43–50.

[11]. Zega, A. S., Tomi, I. A., & Desi, P. A. (2020). Identifikasi Warna Berdasarkan Jenis-Jenis Citra Pada Pengolahan Citra Digital dengan Menggunakan Metode K-Means Clustering. Jurnal Sains Komputer & Informatika (J-SAKTI), Vol. 4(September).